Acetylcholine Induces Hyperpolarization Due to Sarcoplasmic Reticulum Calcium Release Activating Potassium Channels

نویسنده

  • V. Ganitkevich
چکیده

Smooth muscle cells, dispersed from the circumflex coronary artery of the guinea pig, were studied with the whole-cell configuration of the patch-clamp. The resting potential of about -40 mV was superimposed by spikelike hyperpolarizations (SLHs) up to -20 mV amplitude. The SLHs resulted from spontaneous transient outward currents (spontaneous TOCs) measured under voltage-clamp (-40 or -50 mV). Acetylcholine (ACh; 10 juM) increased SLHs and TOCs in amplitude and frequency. Atropine blocked the ACh effects. ACh-induced SLHs or TOCs were suppressed by bath application of tetraethylammonium (1 or 10 mM) or by cell dialysis with cesium, suggesting that they result from induction of potassium currents. In cell-attached patches, induction of currents through 130 -pS potassium channels was recorded when ACh was bath-applied. An ACh-induced increase in intracellular [Ca21] is suggested as a second messenger since SHLs and TOCs were suppressed by cell dialysis of 10 mM EGTA. ACh induced SHLs and TOCs in the absence of extracellular calcium. Intracellular application of 5 mg/ml heparin blocked ACh-induced TOCs. When the intracellular calcium stores were depleted by pretreatment with caffeine, the ACh effects were suppressed. Similarly, ACh pretreatment reduced the caffeine-induced outward currents. The results suggested that ACh augments calcium release from the sarcoplasmic reticulum, and the released calcium activates maxi potassium channels. In the single cell, calcium-activated potassium channels generate TOCs and SLHs that sum up to a hyperpolarization of the multicellular tissue. (Circulation Research 1990;67:525-528)

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Isolated guinea pig coronary smooth muscle cells. Acetylcholine induces hyperpolarization due to sarcoplasmic reticulum calcium release activating potassium channels.

Smooth muscle cells, dispersed from the circumflex coronary artery of the guinea pig, were studied with the whole-cell configuration of the patch-clamp. The resting potential of about -40 mV was superimposed by spikelike hyperpolarizations (SLHs) up to -20 mV amplitude. The SLHs resulted from spontaneous transient outward currents (spontaneous TOCs) measured under voltage-clamp (-40 or -50 mV)....

متن کامل

Quintessence of Vascular Ca2+ and K+ channels

Vascular tone and hence blood pressure are determined by the contractile state of vascular smooth muscle cells (VSMCs) within the blood vessel wall, which is regulated by intracellular calcium concentration ([Ca]i). Vasoconstrictors act through increasing [Ca]i as well as on the apparent calcium sensitivity of the contractile process in VSMCs, whereas relaxing factors have the opposite effect. ...

متن کامل

Role for calcium from the sarcoplasmic reticulum in coupling muscle activity to nicotinic acetylcholine receptor gene expression in rat.

Neurally evoked muscle electrical activity suppresses nicotinic acetylcholine receptor (nAChR) gene expression in extrajunctional domains of adult muscle fibers. It has been proposed that this regulation is mediated by calcium influx through voltage-dependent L-type calcium channels but bypasses the sarcoplasmic reticulum in chick and mouse C2C12 cells. Here we report that in rat muscle calcium...

متن کامل

Ion Channels of Pituitary Gonadotrophs and Their Roles in Signaling and Secretion

Gonadotrophs are basophilic cells of the anterior pituitary gland specialized to secrete gonadotropins in response to elevation in intracellular calcium concentration. These cells fire action potentials (APs) spontaneously, coupled with voltage-gated calcium influx of insufficient amplitude to trigger gonadotropin release. The spontaneous excitability of gonadotrophs reflects the expression of ...

متن کامل

Channels in Murine Endothelial Cells: Block by Intracellular Calcium and Magnesium

Blood fl ow is intimately linked to endothelial membrane potential and intracellular Ca 2+ levels ([Ca 2+ ] i ). Endothelial Ca 2+ infl ux appears to depend on the electrochemical gradient, and likely occurs through nonvoltage-dependent Ca 2+ entry pathways, possibly transient receptor potential (TRP) channels. Therefore, hyperpolarization of the endothelium membrane elevates [Ca 2+ ] i by an i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005